数学卷子高三理科怎么写好(高三做数学试卷的技巧和方法)

数学卷子高三理科怎么写好(高三做数学试卷的技巧和方法)

首页数学更新时间:2024-10-31 01:16:04

数学作为高考生路上的拦路虎,一直被同学们视为“头号公敌”。特别是在解答题的作答上,一个脑回路没转过来,就会丢掉十几分!

“一分之差,千军万马”,何况是十几分十几分的丢失。学长整理了一份数学解答题的解题模板,希望大家能够谨记,为高考数学提供一份保障!

为了帮助大家找到思路,学长整理了《高考数学常考大题的8个解题模板》,供大家学习使用!私信:数学,免费领取全部打印版!高一到高三都适用!

下面是数学的8个解题模板:

一. 三角变换与三角函数的性质问题

1.解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。

2.构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。

③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。

二. 解三角形问题

1.解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

2.构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。

三. 数列的通项、求和问题

1.解题路线图①先求某一项,或者找到数列的关系式。②求通项公式。③求数列和通式。

2.构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。

③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。

④写步骤:规范写出求和步骤。

⑤再反思:反思回顾,查看关键点、易错点及解题规范。

四. 利用空间向量求角问题

1.解题路线图①建立坐标系,并用坐标来表示向量。②空间向量的坐标运算。③用向量工具求空间的角和距离。

2.构建答题模板①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。

②写坐标:建立空间直角坐标系,写出特征点坐标。

③求向量:求直线的方向向量或平面的法向量。

④求夹角:计算向量的夹角。

⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。

五. 圆锥曲线中的范围问题

1.解题路线图①设方程。②解系数。③得结论。

2.构建答题模板①提关系:从题设条件中提取不等关系式。

②找函数:用一个变量表示目标变量,代入不等关系式。

③得范围:通过求解含目标变量的不等式,得所求参数的范围。

④再回顾:注意目标变量的范围所受题中其他因素的制约。

六. 解析几何中的探索性问题

1.解题路线图①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)②将上面的假设代入已知条件求解。③得出结论。

2.构建答题模板①先假定:假设结论成立。

②再推理:以假设结论成立为条件,进行推理求解。

③下结论:若推出合理结果,经验证成立则肯。 定假设;若推出矛盾则否定假设。

④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。

七. 离散型随机变量的均值与方差

1.解题路线图(1)①标记事件;②对事件分解;③计算概率。(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。

2.构建答题模板①定元:根据已知条件确定离散型随机变量的取值。

②定性:明确每个随机变量取值所对应的事件。

③定型:确定事件的概率模型和计算公式。

④计算:计算随机变量取每一个值的概率。

⑤列表:列出分布列。

⑥求解:根据均值、方差公式求解其值。

八. 函数的单调性、极值、最值问题

1.解题路线图(1)①先对函数求导;②计算出某一点的斜率;③得出切线方程。(2)①先对函数求导;②谈论导数的正负性;③列表观察原函数值;④得到原函数的单调区间和极值。

2.构建答题模板①求导数:求f(x)的导数f′(x)。(注意f(x)的定义域)

②解方程:解f′(x)=0,得方程的根。

③列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区间,并列出表格。

④得结论:从表格观察f(x)的单调性、极值、最值等。

⑤再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步骤规范性。

,
大家还看了
也许喜欢
更多栏目

© 1998-2024 shitiku.com.cn,All Rights Reserved.