真题来了。
各位同学大家好,来看一下这两个考研真题。第一个是一九九八年数学二考过的题目,第二个是二零一七年数学三考过的大题目。这两个题目几乎完全一样,这个叫真题解析。
以前考过的真题再次考察到,包括二零二五年,虽然还没有考,二零二五年有一些题目一定是一九八七年到二零二四年一九八七到二零二四年,这三十八年数学一二三公共部分所考过的题目再次解析。
这两个题目多么像,二零一七年让我们去求零到一,这个方程有十根去求k的取值,不就是函数的取值范围吗?就是老于二分之一减一到二分之一,其实这个就是k的取值范围。
为什么?利用问一下高中的分离阐述法,令它为y一,令它为y二吗?这两个函数有焦点吗?这个函两个函数图像有焦点吗?能听懂吗?重点来讲一下一九九八年这个题目,其实二零七一年这个题目就不用做了,它的k的范围就是这个到二分之一,知道吧?
然后证明一下第一位x平方大于等于大于一加x乘以loen一加x平方,这个应该怎么去做?这个非常常规,利用一下函数的单调性加极值去判断一下,利用一下单调性极值最值的问题去判断这个不等式。
首先利用这个函数为fx,然后很清楚的能够看到f零等于零,然后对fx求导,f零一撇是等于零,fx再学一个二级导数,因为一级导数判断不了一级导数,判断不了它是大于零还是小于零,去把x等于零万零点,f零一撇是等于零,这个显然能够看出来。
然后再求a一个二级导数,求完二级导数以后再通分,通分在这里能够看到x减l e x,这是一个非常常用的不等式,是用一下这个,所以分子大于零,分母e加x在x大于零小于一的时候肯定也是大于零,所以二阶导数是大于零的二阶导数是大于零。
然后一阶导数等于零,这个f零不就是极小值吗?所以fx大于f零吗?能理解吧?fx就大于f零了,也可以从单调性从这个角度去分析一下,也可以利用极值很快,fx大于零就是要证明的这个不等式,这个大于零就是要证明x平方大于后面这一大串成立了。
然后证明一下第二文,看一下这个第二文,这个左边烙印二分之一减一,不就是如果把中间这个函数看成gx,把这个看成gx,那不就是g一就等于它吗?这个二分之一显然带不进去计零,可以去求一下x区间与零证gx这个极限,这个极限是一个无穷大减无穷大类型的位置是一通分,然后用一下诺贝塔法子或者是等价无穷小替换,这个极限不难得到二分之一。
所以其实就是要证明一下gx是单调递减就可以了。如果是gx单调递减,gx不就是大于g一小于优级线吗?证明gx单调递减对gx求导,简单的求导一定要会,然后通分,球完岛以后通分,通完分以后这不就是刚刚证明的低温的分子小于零吗?所以下面分母是大于零,整体gx一撇小于零,gx单调递减就正好了。
这是一九九八年的题目和二零一七年题目,非常的像,大家自己再好好感受一下这样的题目一点都不难,但是很多同学在考场上二零一七年尤其是二零一七年题目得分率特别低,这个题目得分率就零点二十几,非常恐怖,知道吧?这个题目当年十分平均分就二点几分,很恐怖的,所以大家一定要在平时把计算好好的去练一练。
今天这个题目就先讲到这里,拜拜。
,